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I. Introduction 

Present designs of high luminosity storage ring colliders, such as a B-Factory, employ 

small beta functions of po ~ 1 cm at the interaction point (IP) in order to achieve the 

required luminosity of 3 x 1033 cm-2s- I or more,I} However, effective utilization of a 

small po requires a small bunch length, (J"Zl as well , since the luminosity degrades unless 

(J"z ::; po, Taking into account bunch lengthening due to the microwave instability, a 

bunch length of (J" z = 0.5 ~ 1 cm is typically considered. Such a short bunch may be 

realized through using a high rf voltage and/or a high frequency, or by designing a ring 

with a low momentum compaction factor. There are some disadvantages with either 

of these approaches. For example, using a high rf voltage increases the rf power and 

may increase the required number of rf cavities as well. Such an increase in the number 

of rf cavities is generally undesirable because it increases the number and strength of 

parasitic higher-order modes that are the main source of coupled-bunch instabilities. 

Similarly, a ring with a very low momentum compaction factor is not a preferable 

choice, either. 2
) This approach reduces the threshold bunch current for the microwave 

instability and the transverse mode-coupling instability (since the synchrotron tune 

will be reduced). If the required bunch current is larger than the threshold value of the 

microwave instability, the bunch will be lengthened (and its energy spread increased) 

so that we may fail to maintain the required bunch parameters. Depending on how it is 

varied, a change of the momentum compaction factor also affects the beam emittances. 

A higher rf voltage helps shorten the bunch because it provides a steeper slope of 

the rf wave at the synchronous phase, and thus a deeper rf potential for the beam, The 

equivalent slope can also be obtained by using a higher-frequency rf system with angular 

frequency n· Wr f where Wr f is the angular frequency of the original rf system. Then, the 
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required rf voltage is reduced to l/n times the original voltage. However, high-power 

CW klystrons must be sought to feed power to these high-frequency cavities. Moreover, 

the momentum acceptance of the higher-harmonic rf system, which is proportional to 

jv,,/h (the definitions are given below), may become too small. 

It was suggested by Zisman that the combination of the two systems (double rf 

system) may be more effective to shorten a bunch, compromising between the desirable 

and the undesirable effects mentioned above. In this paper, we demonstrate (using the 

high energy ring of APIARY-VI as an example) that a double rf system is, in fact, 

quite effective in optimizing the rf performance. In Section II, the parameters used are 

explained, and some handy formulae for bunch parameters are derived. In Section III, 

we consider an example of bunch shortening by adding a higher-harmonic rf system to 

the main rf system. The parameters of the main rf system are unchanged. The double 

rf system, however, can be used for another purpose. Namely, the original bunch length 

can be obtained with a main rf voltage substantially lower than for a single rf system 

without necessitating a high-power source for the higher-harmonic cavities (a low-power 

source is generally still needed) . Using a double rf system, the momentum acceptance 

remains large enough for ample beam lifetime. Moreover, the increase in nonlinearity of 

the rf waveform increases the synchrotron tune spread, which potentially helps a beam 

to be stabilized against longitudinal coupled-bunch instabilities. We will show some 

examples of this application in Section IV. In Section V, we discuss the choice of the 

higher-harmonic frequency. Our conclusions are presented in Section VI. 

II. Double RF System 

In this section, we define some quantities to describe the double rf system and then 

derive some useful formulae. The voltage seen by beam particles for the double rf 

system case is defined by 

V(¢» = Vp[sin(¢> + ¢>,) + ksin(n¢>+ n¢>n)J, (1) 

where 

v" = peak voltage of the main rf system 

kv" = peak voltage of the higher-harmonic rf system 

h harmonic number of the main rf system 

n ' h = harmonic number of the higher-harmonic rf system 

¢>, = synchronous phase angle of the main rf system 

n '¢>n = synchronous phase angle of the higher-harmonic rf system, 
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The Hamiltonian for synchrotron motion is given by 

(2) 

where 
w = t:.E, 

Wo 
(3) 

and 

U(t/» = - ~ t(V(t/» - V(O))dt/>. (4) 

The other parameters are as follows: 

Wo = angular revolution frequency 

1] = Ci - 1112 = phase slip factor 

Ci = momentum compaction factor 

"'I = Lorentz factor 

(3 = )1-1112 
E = t:.E + Eo = particle energy 

Eo = energy of the synchronous particle 

e elementary charge. 

The quantity e V(O) represents the synchrotron radiation loss per turn that must be 

replenished by the rf system. 

The quantities k and t/>n are free parameters. However, for a given k, the shortest 

bunch can be obtained when 

nt/>n = 7r (5) 

since the slope of the higher-harmonic rf voltage reaches its negative maximum there. 

Using the condition expressed by Eq. (5) has several advantages. First, the higher

harmonic rf system provides the most linear voltage over the widest range of t/> with 

this condition. Therefore, the rf potential will be least distorted from a parabolic shape. 

Second, the higher-harmonic system provides no acceleration to synchronous particles. 

Therefore, the higher-harmonic cavities need, in principle, only a small amount of power 

to compensate beam loading and the power loss in the cavity walls. Another advantage 

is that the voltage and the synchronous phase of the main rf system, v" and t/>" remain 

unchanged from the single rf system. To shorten or restore the bunch length, we just 

have to switch on and off the higher-harmonic rf system. For these obvious advantages, 

we set nt/>n to 7r in what follows. 
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Let us derive some useful formulae to characterize a beam in the double rf system. 

The unstable fixed point (in phase angle) q"ep that defines the separatrix in phase space 

is given by a non-trivial( q, f 0) solution of 

sin( q, + q,,) - sin q" - k sin nq, = o. (6) 

The extrema of W corresponding to the separatrix are given by 

2Eo(32 e Vp [ () . k ( 
h 2 2 cos q"ep + q" - cos q" + q"ep sm q" - - cos nq"ep - 1)], 
~ ~ n 

(7) 

or 

2(32 e V. k 

h E 
-2 P[cos(q"ep + q,,) - cosq" + q,,,psinq,, - -(cosnq,,,p -1)]. (8) 

ry ° ~ n 

The above equation gives the momentum acceptance of the double rf system. Equation 

(8) can be rewritten using the synchrotron tune of the single rf system, Q,o, as 

(9) 
k 

x -2 cosq" [cos(q,,,p + q,,) -cosq" + q"ep sin q" - -(cosnq"ep -1)]. 
n 

The equilibrium beam profile is given by 

I(q,)=J(.exp{ 21 q, [cos(q, + q,,)-cosq,,+q,sinq,'- ~k(cosnq, -I)]}, (10) 
O"¢ocos , -

where 
2~h 

O"¢o = OO"zo, (11) 

and O"¢o and O"zo are the bunch length in the single rf system measured in rf phase 

and in the longitudinal distance from the bunch center, respectively, C is the ring 

circumference, and J( is the normalization constant . The two variables q, and z are 

related to each other by the same relationship as 0" ¢o and 0" zo, as specified in Eq. (11). 

The bunch length o"z in the double rf system is obtained by expanding trigonometric 

functions in Eq. (10) by Taylor series around the bunch center. We have 

R£k 
O"z = O"zo/ 1 - ---1.-. 

cos 'f's 
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Note that since cos </>, 9! -1, the argument of the square root is always larger than 1, 

that is, az ::::: azo. The synchrotron tune Q, of the double rf system at small amplitude 

in phase space is calculated in a similar way, and is given by 

R£k 
Q, = Q,o 1 - - -1,-. 

cos '¥s 
(13) 

It is interesting to note that the product of the bunch length and the synchrotron tune 

is preserved in the two systems: 

(14) 

III. An Example of Bunch Shortening 

Here we consider an example of bunch shortening using a higher-harmonic rf system 

with n = 2 and k = 0.5. Figure 1 shows the rf voltages of the single rf system and 

the double rf system, labelled by "S" and "D", respectively. The parameters used are 

relevant to the high energy ring of APIARY-VI. They are listed in Table 1. 

Table 1. Parameters of the high energy ring of APIARY-VI used for the bunch 

shortening example. 

Circumference, C (m) 2200 

Beam energy, Eo (Ge V) 9.0 

Momentum compaction factor, ex 0.00245 

Harmonic number of the single rf system, h 3492 
Rms bunch length in the single rf system, a zO (cm) 1.0 

Rms relative energy spread in the single rf system, If,- 0.0006 

Rms phase spread in the single rf system, a ~o (rad) 0.1 

Momentum acceptance of the single rf system, (~~)sep 0.0105 

Synchrotron tune of the single rf system, Q sO 0.0523 

Peak voltage of the single (& main) rf system, v" (MV) 18.5 

Synchronous phase of the single (& main) rf system, </>, (deg) 169.03 

Ratio of the higher-harmonic frequency to the main frequency, n 2 

Ratio of the higher-harmonic rf voltage to the main rf voltage, k 0.5 

Synchronous phase of the higher-harmonic rf system, </>n (deg) 90.0 
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The rf potentials are plotted in Fig. 2. Figure 3 shows the separatrices in longitudinal 

phase space. The momentum acceptance of the double rf system is slightly enlarged 

to 0.0112 from (~~)seP = 0.0105 of the single rf system, while the phase acceptance 

is reduced. Both acceptances are large enough for ample beam lifetime in the two rf 

scenarios. Needless to say, the choice of the rf system does not affect the energy spread 

of a beam. The beam profiles as a function of the longitudinal distance, z, are plotted 

in Fig. 4 in units of the bunch length of the single rf system, O'zO. The calculated value 

of the rms bunch length from Eq. (12) is 0.704 cm, while the computed value from Fig. 

4 is 0.706 cm. They are in good agreement. Figure 5 shows the same beam profile on 

a logarithmic scale. The small difference of the beam intensity at z = ±lOO'zo is due to 

the small asymmetry of the rf potential (see Fig. 2). Figure 6 shows the synchrotron 

tune, Q" as a function of z normalized by O'zO where the particle trajectory and the 

positive longitudinal axis intersect. One can see that Q, drops at a faster rate with z 

than in the case of the single rf system. The resulting larger tune spread may help to 

stabilize longitudinal beam instabilities. 

IV. Reduction of the Main RF Voltage 

In the previous section, we considered the example of bunch shortening by adding 

a higher-harmonic rf system to the main rf system. The voltage of the main rf system 

remained unchanged in that example. The double rf system, however, can also be used 

for another purpose. Namely, the same bunch length can be achieved for a reduced 

voltage of the main rf system. This application is particularly beneficial if one wants 

to decrease the number of rf cavities to lower the HOM impedance and thus weaken 

coupled-bunch instabilities, provided that the reduction of impedance of the main rf 

system dominates the additional contribution of the higher-harmonic cavities to the 

impedance. A potential problem is that the momentum acceptance is reduced if the 

voltage of the main rf system is reduced. As seen in Fig. 3, however, the higher

harmonic rf system tends to increase the momentum acceptance as compared to the 

(reduced-voltage) single rf system. Therefore, the actual momentum acceptance will 

not be as low as it would be for the reduced-voltage single rf system by itself. We have 

taken n = 2 and studied three different values of k to indicate the range of possibilities. 

The rf parameters and the momentum acceptances are summarized in Table 2. Other 

parameters not listed are taken from Table l. 
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Table 2. Rf parameters and momentum acceptances for n = 2 and different values 

of k. 

k 0 0.333 0.5 0.75 

</>, (deg) 169.03 161.75 158.06 152.44 

v" (MV) 18.5 11.24 9.42 7.61 

(~E)"p 0.0105 0.0078 0.0072 0.0067 

The phase </>, of the main rf system is given by 

tan </>so J tan </>, = 2 [1 + 1 - (1 - €2)(1 - n 2P)], 
1-€ 

(15) 

where 

€ = n . k . tan </>,0 (16) 

and </>,0 is the synchronous phase of the original single rf system (i.e., the k = 0 case in 

Table 2) . Since tan </>,0 ~ 0, Eq. (15) can be approximated by 

tan </>, ~ tan </>,0(1 + nk). (17) 

The necessary voltage of the main rf system is given by 

sin </>so 1 
v" = v"o . -I. ~ v,,°1 + k' SIn lPs n ~ 

(18) 

where v"o is the voltage of the original single rf system. 

The separatrices in phase space for the three values of k are plotted in Figs. 7, 8 and 

9, respectively. In each figure, the separatrices of the original single rf system (k=O), 
the double rf system when the higher-harmonic system is turned off, and the double rf 

system when the higher-harmonic rf system is turned on, are denoted by "S", "M" and 

"D" , respectively. One can see that the double rf system tends to make up some of the 

decrease of the momentum acceptance due to the reduction of the main rf voltage so 

that the momentum acceptance has a weak dependence of k and Vp. In all three cases, 

the momentum acceptance is still larger than 10 times the rms relative energy spread . 

Figure 10 shows the beam profiles on a logarithmic scale as a function of z in units 

of the rms bunch length of the single rf system, a 20, for the k = 0.5 case. The beam 

profile of the double rf system deviates slightly from that of the single rf system in the 

beam tail. The beam profiles for other k values look almost the same as Fig. 10. 
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v. Choice of Higher-Harmonic Frequency 

From Eqs. (12) and (18), we notice that the bunch length and the peak main rf 

voltage remain nearly constant as nand k are changed while their product, n . k, is 

kept fixed (remember that cos </>. ~ -1). Obviously, a larger value for n is beneficial in 

reducing k. However, the nonlinear region of the higher-harmonic rf voltage approaches 

the bucket center as n increases, leading to further distortion of the particle motion 

compared with that of the single rf system. This may result in intolerably small mo

mentum acceptance. At the same time, the nonlinearity of the rf voltage will increase 

particle population in the tail. Figures 11, 12 and 13 illustrate these problems. Figure 

11 shows the separatrices for n = 3 and k = 0.333 which provides the same bunch length 

and the same voltage of the main rf system as the n = 2, k = 0.5 case of Section IV. 

(The notation follows that of Section IV.) As can be seen, the momentum acceptance 

is reduced to (~~).ep = 0.0064 from (~~).ep = 0.0072 for the n = 2, k = 0.5 case. The 

separatrix has now the shape of a gourd instead of a fish . The phase acceptance, on the 

other hand, is enlarged compared with that for the n = 2, k = 0.5 case in this particular 

example. Figure 12 shows the beam profiles on a logarithmic scale. Comparing with 

Fig. 10, it can be seen that the particle population increases in the tail. 

Now let us increase k to reduce the main rf voltage further. Figure 13 shows the rf 

potential for the n = 3, k = 0.5 case which provides the same bunch length and main 

rf voltage as the n = 2, k = 0.75 case of Section IV. One can see that the potential 

has developed a local minimum around </> = -2. The local minimum is caused by the 

superposition of the bottom peak of the higher-harmonic rf voltage on the top peak of 

the main rf voltage. Particles that escape from the beam core by quantum excitation 

or other mechanisms can and will be trapped in this local minimum. This trapping 

enhances the particle population in the beam tail, leading to very short beam lifetime. 

The bucket size also becomes too small. The rf parameters and the momentum accep

tance of the above two cases are summarized in Table 3. Other parameters not listed 

are taken from Table 1. For n = 2, the local minimum does not appear for any k value. 

Table 3. Rf parameters and momentum acceptances for n = 3 and different values 

of k. 

k 0 0.333 0.5 

</>. (deg) 169.03 158.07 152.44 

v" (MV) 18.5 9.42 7.61 

(¥.: )aep 0.0105 0.0064 0.0050 
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The value of k where the local minimum starts to appear on the left hilltop of the 

potential well is a function only of the synchronous phase of the main rf system, </>.0, 
Figure 14 shows this dependence. The curve can be interpreted as the absolute upper 

limit of k. Even with k below this curve, of course, the momentum acceptance may be 

too small. 

From the specific examples shown above, we cannot derive any definite conclusion 

about what n would be a good choice. That depends on other parameters and machine 

constraints. We must make a careful investigation of the choice of n on a case by case 

basis. 

VI. Conclusions 

We have seen that a double rf system is quite effective to optimize the rf performance 

of a high-luminosity collider. It can be used to shorten a bunch by simply adding 

the higher-harmonic rf system to the main rf system without changing the main rf 

parameters, or to maintain the bunch length when the main rf voltage is substantially 

reduced. 

The double rf system idea has generally been proposed for lengthening the bunch.3) 

In this application, the phase and the voltage of the higher-harmonic system are chosen 

such as to make the first and second derivatives of the total rf wave zero at the bunch 

center. Then, the rf potential becomes quartic in phase, which reduces the restoring 

force near the bunch center, with the result that the bunch lengthens. Both analytical 

studies 4) and experimental observations 5.6) show that the actual bunch shape is very 

sensitive to the phase error between the two rf systems. A small error of the phases 

leads to a drastic distortion of the bunch shape from a flat-top shape. Obviously, this 

is not the case for the bunch-shortening application. There is no essential constraint in 

the choice of phase and voltage of the higher-harmonic rf system. A small deviation of 

the higher-harmonic rf phase from its chosen value, say n</>n = 7r as in this study, will 

lead to only a slight change in the bunch length. 

Since the higher-harmonic cavities do not contribute to the compensation of the 

synchrotron radiation loss , they need only a relatively small amount of power for the 

resistive power loss at the cavity walls. This suggests a possibility that the higher

harmonic system may be "beam powered" by the beam-induced voltage due to the 

beam loading effect. 7 ) In this case, the external power source generates a certain voltage, 

say, Vt, only during initial operation, and then the beam-induced voltage provides the 

required higher-harmonic rf voltage together with Vt. The beam-induced voltage could 

be used, by suitable detuning, to provide Vt for the next passage of a bunch. Including 
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the feasibility of this beam-powered system, a future study should be done on how much 

power can be saved by employing the double rf system. 
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and "D", respectively. 

4 

3 -

2 

o 

- 1 
· 6 - 4 · 2 

RF POTENT IAL 

o 
~ CRAOJ 

2 4 

Figure 2: Rf potentials corresponding to Fig. 1. 

11 

6 



X I 0 - 3 PHASE SPACE PLOT 

15. 

10. 

5. 

w O. 
...... 
W 
<l 

- 5 . -

- 10 . 

- 15 . 
-3 - 2 - 1 o 2 

~ (RADl 

Figure 3: Separatrices in longitudinal phase space for the cases in Fig. 1. 
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Figure 5: Same as Fig. 4, but using a logarithmic scale to emphasize the tails of the 

distributions. 
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Figure 7: Separatrices in phase space for n = 2 and k = 0.5. "S" labels the original 

(k = 0) single rf system, "M" denotes the reduced voltage operation of the main system 

not including the higher-harmonic voltage, and "D" denotes the full double rf system. 
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Figure 8: Separatrices in phase space for n = 2 and k = 0.75, using the same notation 

as in Fig. 7. 
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Figure 9: Separatrices in phase space for n = 2 and k = 0.333, using the same notation 

as in Fig. 7. 
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Figure 10: Beam profiles on a logarithmic scale as a function of z (in units of 0",0) for 

n = 2 and k = 0.5. 
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Figure 11: Separatrices in phase space for n = 3 and k = 0.333, using the same notation 

as in Fig. 7. 
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Figure 12: Beam profiles on a logarithmic scale as a function of z (in units of 0"%0) for 

n = 3 and k = 0.333. 
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